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Big data on the web

With 2.41 billion monthly active users as of 
the second quarter of 2019.

300 million photo uploads per day

Every minute on Facebook: 510,000 
comments are posted, 293,000 statuses 
are updated, and 136,000 photos are 
uploaded.

Twitter has 330 million monthly active users
 (as of 2019 Q1)

Half a billion tweets are sent out each day 
(Mention, 2018).

That equates to 5,787 tweets per second.

https://s22.q4cdn.com/826641620/files/doc_financials/2019/q1/Q1-2019-Slide-Presentation.pdf
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Big data on the web
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What to do with such Big Data?

● Extract information to make decisions

● Evidence-based decision: 

– data-driven vs. analysis based on intuition & 
experience

● Analytics, business intelligence, data mining, 
machine learning, pattern recognition
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Decision Making

●  Data Representation

– Features and similarity

● Learning

– Classification (labeled data)
– Clustering (unlabeled data)

Most big data problems have unlabeled objects!
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Clustering
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What is a cluster?
A group of the same or similar elements
gathered or occurring closely together
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Pattern Matrix
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Similarity matrix
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Data clusters in 2D space
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Challenges of clustering
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Clustering plays a key role 
in data analytic

● Not feasible to “label” large collection of objects

● No prior knowledge of the number and nature of 
groups (clusters) in data

● Clusters may evolve over time

● Clustering provides efficient browsing, search, 
recommendation and organization of data
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Clustering Users on Facebook
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Clustering Articles on Google News



  15 / 50

Clustering Videos on Youtube
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Distance Measures
e.g., Organizing dinners 

Distance measure tells us which other objects in 
the same data set are more similar and which are 
more dissimilar.
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Differences between Values of 
Common Attribute Types

● For quantitative attributes:

● For qualitative (categorical) attributes:

– Ordinal:

– Nominal: 

Usually computing the distance between two objects consists of aggregating 
the distances, usually differences, between their corresponding attributes.
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Distance Measures for Objects with 
Quantitative Attributes

● An object represented by a vector of m quantitative 
attributes can be mapped to an m-dimensional space.

● Several distance measures are particular cases of the 
Minkowski distance.

– For the Manhattan distance, r = 1

– For the Euclidean distance, r = 2
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Distance Measures for Objects with 
Quantitative Attributes

● Correlation distance
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How about these?
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Distance Measures for Non-conventional 
Attributes

Non-conventional Attributes

– biological sequences
– time series
– images
– sound
– Video

● All these non-conventional attribute types can be 
converted into quantitative or qualitative types
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Distance Measures for short sequences (text)

● The Hamming distance can be used for sequences of values 
and these values are usually characters or binary values.

● The Hamming distance is the number of positions at which the 
corresponding characters or symbols in the two strings are 
different.

– distance between the strings “James” and “Jimmy” is 3

– and between “Tom” and “Tim” is 1
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Distance Measures for short sequences (text)

● For short sequences that can have different sizes we use edit 
distance.

● The edit distance measures the minimum number of operations 
necessary to transform one sequence into another.

● The possible operations are: insertion (of a character), removal 
(of a character) and substitution (of a character by another).

– The edit distance between the strings “Johnny” and 
“Jonston” is 5, since it is necessary to substitute the 
characters h, n, n, y with n, s, t, o (four operations), and to 
add a character n to the end (a fifth operation). 

● A similar idea is used in bioinformatics to compare DNA, RNA 
and amino acid sequences.
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Distance Measures for long sequences (texts)

For long texts we can use “bag of words”:
– For example, for the two texts:

● A = “I will go to the party. But first, I will have to work.”
● B = “They have to go to the work by bus.”

– Each text is converted into a quantitative vector, where 
each position is associated with one of the words
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Distance Measures for Images
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Hundreds of clustering algorithms are 
available; many are “admissible”, but no 
algorithm is “optimal”
– K-means

– Gaussian mixture models

– Kernel K-means

– Fuzzy k-means

– DBSCAN

– Nearest neighbor

– Hierarchical clustering
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Clustering Validation

● The automatic validation measures are divided into three categories:

– External indices: The external criteria uses external information, 
such as class label, if available, to define the quality of the 
clusters in a given partition. Two of the most common external 
measures are the correct-RAND and Jaccard.

– Internal indices: The internal criteria looks for compactness 
inside each cluster and/or separation between different clusters. 
Two of the most common internal measures are the silhouette 
index, which measures both compactness and separation, and the 
within-groups sum of squares, which only measures 
compactness.
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silhouette index

It measures:

– How close to each other the objects inside 
a cluster are.

– The separation of different clusters

 

● a(x
i
) is the average distance between x

i
 and all other objects in its cluster

● b(x
i
) is the minimum average distance between x

i
 and all other objects from other clusters.

● The average of all s(xi) gives the partition silhouette measure value
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Within-groups sum of squares

The within groups sum of squares is given by:

where K is the number of clusters and Ji is the number of 
instances of cluster i, and Ci is the centroid of cluster i.
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Jaccard external measure

● It needs data labels.

● It evaluates how uniform the distribution of the objects in 
each cluster is with respect to the class label.
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Categories of Clustering algorithms

● a) Most techniques define partitions in one step (partitional 
clustering), 

● b) While others progressively define partitions, either increasing 
or decreasing the number of clusters (hierarchical clustering). 



  32 / 50

Categories of Clustering algorithms

● Another criteria is the approach used to 
define what a cluster is:
– Separation-based: each object in the cluster is closer to every 

other object in the cluster than to any object outside the cluster

– Prototype-based: each object in the cluster is closer to a 
prototype representing the cluster than to a prototype representing 
any other cluster

– Graph-based: represents the data set by a graph structure 
associating each node with an object and connecting objects that 
belong to the same cluster with an edge

– Density-based: a cluster is a region where the objects have a 
high number of close neighbors (i.e. a dense region), surrounded 
by a region of low density

– Shared-property: a cluster is a group of objects that share a 
property
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● K-means: 
– The most popular clustering algorithm and a representative 

of partitional and prototype-based clustering methods

● DBSCAN:
– Another partitional clustering method, but in this case density-

based

● Agglomerative hierarchical clustering:
– A representative of hierarchical and graph-based clustering 

methods.
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K-means
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Example
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Example

How many clusters do you 
think there are in this data?  
How might it have been 
generated?
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Example
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Weakpoints of K-means

● Random initialization means that you may 
get different clusters each time

● Data points are assigned to only one cluster 
(hard assignment)

● Implicit assumptions about the “shapes” of 
clusters 

● You have to pick the number of clusters…
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K-means clusters are 
convex
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Choosing the right K



  41 / 50

Jogota validation

● Jagota validation suggests a measure that 
emphasizes cluster tightness or homogeneity:

● |Ci | is the number of data points in cluster I

● Q will be small if (on average) the data points 
in each cluster are close
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DBSCAN
density-based spatial clustering of applications with noise

● In contrast to k-means, DBSCAN automatically 
defines the number of clusters.

● In DBSCAN, objects forming a dense region 
belongs to the same cluster.

● Objects not belonging to dense regions are 
considered to be noise.
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DBSCAN
density-based spatial clustering of applications with noise
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DBSCAN
density-based spatial clustering of applications with noise

● A core instance p is an instance that directly reaches 
a minimum number of other instances.

● To be considered “directly reachable” an instance q 
must be at a lower distance from p than a predefined 
threshold.

● If p is a core instance, then it forms a cluster 
together with all instances that are reachable from it, 
directly or indirectly.

● Each cluster contains at least one core instance.

● DBSCAN also has some randomization on deciding to 
which core instance a given instance will be attached 
when there is more than one core instance that can 
reach it directly 
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DBSCAN
Pros & Cons
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Agglomerative Hierarchical Clustering

● Hierarchical algorithms construct clusters 
progressively and based on pairwise distances.
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Agglomerative Hierarchical Clustering

● We start with every data point in a separate 
cluster.

● We keep merging the most similar pairs of 
data points/clusters until we have one big 
cluster left.

● This is called a bottom-up or agglomerative 
method.
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Agglomerative Hierarchical Clustering
Demo
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Cluster Linkage 
● The single linkage: This measures the distance between 

the closest instances, one from each set. It favors the 
appearance of a dominant cluster.

● The complete linkage: This measures the distance 
between the most distant instances, one from each set. It 
favors similar clusters 

● The average linkage: This measures the average 
distance of every pair of instances, each instance of a pair 
from each set. It is in between the two previous 
approaches.
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Effect of linkage criteria
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